
Nr 2 (29)
STUDIA INFORMATICA

Systems and information technology 2023

Mateusz Przychodzki1
ORCID: 0009-0000-2668-4875

Artur Niewiadomski2
ORCID: 0000-0002-9652-5092

University of Siedlce
Faculty of Exact and Natural Sciences
Institute of Computer Science
ul. 3 Maja 54, 08-110 Siedlce, Poland

{1mateusz.przychodzki,2artur.niewiadomski}@uws.edu.pl

Application of artificial neural networks and NEAT
algorithm to control a quadcopter
DOI: 10.34739/si.2023.29.03

Abstract. We present a framework for building Artificial Neural Networks (ANNs) able
to control a quadcopter and perform basic maneuvers, like hover or following waypoints.
In this approach, we make use of the Neuroevolution of Augmenting Topologies (NEAT)
algorithm which is aimed at creating the network structure and the weights in result of
evolutionary computations. In order to evaluate fitness of individuals, we use physics
based, realistic simulation engine Gazebo, where each individual controls a drone in
a simulated environment. Our approach is aimed at using one of existing, popular
protocols used to remotely control drones, and train ANNs able to imitate signals
received from a radio controller operated by a human pilot. Thus, contrary to the
most of other approaches, our autonomous controller cooperates with standard drone
software. Our ultimate goal is to train ANNs able to control a real-world quadcopter
and perform advanced tasks autonomously. Not only such ANNs should be able to
perform the maneuvers correctly, but they should be small enough to transfer them into



42 M. Przychodzki, A. Niewiadomski

a quadcopter’s limited memory. In this paper we report the first stage of our project - a
successful development and deployment of the ANNs distributed training framework,
and choosing the activation function for further research.

Keywords: Artificial Neural Networks, Unmanned Aerial Vehicles, NEAT Algorithm,
Unity, Gazebo

1 Introduction

In the modern world, unmanned aerial vehicles (UAVs) take various forms, from models of
monoplane aircraft to helicopters and multi-rotor aircraft. The growing popularity of UAVs
in the consumer and commercial markets calls for new technologies, control systems, and
autonomous flight features. Applications of multi-rotor drones, besides hobby users and
cinematography, are, for example, search and rescue operations [11], construction [10], and
agriculture [9]. When performing these kinds of missions, functions like avoiding obstacles,
object tracking, or hovering are used, allowing the operator to focus on a given task without
the effort of maintaining a multi-rotor UAV in the air. Autonomous behaviors of drones are
implemented algorithmically or using artificial intelligence methods, like Artificial Neural
Networks (ANNs) [8].

In this work, we focus on training ANNs able to control a quadcopter and perform one
of the basic autonomous maneuvers - hover. To this aim, we exploit a neuroevolutionary
algorithm called Neuroevolution of Augmenting Topologies (NEAT) [21] and Gazebo [37] -
a robust and accurate physics-based drone simulation environment. Our idea is to use input
data for ANN solely from onboard sensors and train it to generate output imitating radio
signals received by a drone controlled by a human pilot.

The main contribution of this paper is the design of a framework that allows simultaneous
training of many simulated quadcopters using containerization technology [12].
We also report on validation and testing of our implementation of the framework. To this
aim, we performed multiple experiments designed to test the correctness of the implemented
system and reveal the most suitable activation function for ANN. Our solution enables real-
time monitoring and visualization of the training progress using a three-dimensional graphical
environment Unity 3D [43]. Alternatively, the tool allows running the training process without
visualization, enabling the use of this software in server or cloud environments. Moreover, the
extensive parametrization possibilities and exploitation of a popular MultiWii Serial Protocol
[20] used widely to control drones, allow for modeling a broad spectrum of quadcopters and
training well-suited, tailor-made ANNs, which can then be transferred directly to physical
quadcopters.

The rest of the paper is structured as follows. First, we introduce basic facts about quad-
copters’ structure, flight mechanics, and control. Then, we recall fundamental concepts behind
ANNs and the NEAT algorithm, and we compare other approaches with ours. The next sec-
tion introduces our approach and gives some insight into implementation of the framework
components. Finally, we present the preliminary experimental results, followed by conclusion
and future work.



Application of artificial neural networks and NEAT algorithm to control a quadcopter 43

1.1 Quadcopter flight mechanics and fundamental structure

Nowadays, UAVs have become increasingly complex and advanced machines with a multi-
tude of components and subsystems responsible for particular functions. However, there is a
minimum specification for flight that serves as the foundation for all UAVs.
This minimum specification includes a Frame, a Flight Controller (FC), an Electronic Speed
Control (ESC), Brushless motors, Propellers, a Battery, and a Transceiver [15].

Figure 1. Typical drone motor orientation and resultant thrust forces. Source:[46]
The Flight Controller is a mainboard responsible for housing the drone’s CPU, mem-

ory, flash storage, and various sensors, such as the Inertial Measurement Unit (IMU) [17,
16]. The IMU reads triaxial linear acceleration and triaxial gyroscope values, which are
used alongside pilot directives received from the operator’s radio, to generate appropriate
motor speeds for each engine. The process of generating motor speeds is based on a propor-
tional–integral–derivative controller (PID) loop [4, 5]. Based on the pilot directives and IMU
readouts, the PID loop generates signals, which are then converted by ESC to appropriate
values of three-phase alternating current to control each motor individually.

For a drone to hover in the air, the thrust generated by motors must equal the gravitational
pull experienced by the drone body [19]. However, if all the motors were rotating in the
same direction, the total angular momentum generated by the motors would be uncontrollably
rotating the drone body. To counteract this force, quadcopters typically pair their engines into
two groups rotating clockwise and counterclockwise (see Fig. 1).

Typically, pilot directives are collected by a radio receiver housed on FC board. In our
work, we used an artificial neural network to generate those directives, and we exploited the
MultiWii Serial Protocol (MSP) [20] for communication. MSP is a binary message-based
protocol for sending information, such as control channels, telemetry, and sensor data. MSP
provides fast and reliable communication between drone components, enabling UAV control
via a simulated radio transmitter. We send generated raw RC channel values representing
throttle, yaw, pitch, and roll axes, and AUX1 channel, allowing arming of the simulated drone.
This approach is quite original for simulated drone control, and enables cooperation with a
wide range of embedded FC software.

1.2 Neuroevolution of Augmenting Topologies

Neuroevolution of Augmenting Topologies (NEAT) is a powerful approach in the field of
evolutionary computation and artificial intelligence. Developed by Kenneth O. Stanley and



44 M. Przychodzki, A. Niewiadomski

Risto Miikkulainen in 2002 [21], NEAT is designed to evolve Artificial Neural Networks with
focus on complex and diverse topologies. Unlike traditional methods of ANNs training that
focus on optimizing weights of fixed architectures, NEAT usually starts with a population
of small, simple, and random selection of networks and evolves them over generations in a
process known as environmental evaluation by introducing new neurons, connections, and
weight mutations.

NEAT uses many concepts from genetic algorithms [22] to evolve the neural networks.
Each ANN in the population is represented as a genome that encodes the structure of the
network. At the end of each generation NEAT employs genetic operators, such as mutation
and crossover, to create new offspring with different topologies or connection weights from
the parent networks. The algorithm assigns a fitness score to each network based on its per-
formance in the given task. The fittest networks (presumably the best adapted to achieving a
given task) are more likely to pass their genes to the next generation, encouraging the evolution
of more effective architectures. By starting with simple structures and gradually augmenting
them over generations, NEAT can explore a diverse range of architectures and adapt to the
problem’s complexity. Additionally, NEAT promotes the preservation of innovation (Specia-
tion) throughout the evolutionary process, ensuring that promising features and connections
are not prematurely discarded [21].

2 Related Work

In this section, we compare our approach to others but, to our best knowledge, only a few
approaches come vaguely close to ours. Many publications indicate the successful use of
NEAT algorithms in training ANN in various control tasks [33]. Typically, NEAT is used to
create and optimize ANN in a virtual environment but, like in [34, 35], UAV flight mechanics
is oversimplified. Usually, autonomous UAVs operating as standalone platforms in GPS-less
environments rely on vision, combining optical flow sensors and visual-inertial odometry
(VIO) with sonar and LIDAR for distance measurement [27, 23, 28]. There are very few
attempts to control UAVs by artificial neural networks solely using inertial measurement unit
reading.

The approach [29], which compares traditional, widely used PID controllers with custom
neural network models, seems to be similar to ours. However, the ultimate goal of this approach
was to completely replace the PID controller with an ANN-based one, which receives the IMU
sensor data as input and generates a direct PWM signal representing the desired motor speeds.
The paper reports promising results in generating accurate motor speed commands with lower
oscillation (instability) compared to the PID controller. However, this solution could not be
deployed to a physical platform due to flash memory size constraints. In our approach, a trained
neural network mimics a pilot with the radio controller, generating the appropriate signals.
Thus, our solution works with the PID built into the FC, allowing it to generate signals for the
motors, and so far, the resulting models are small enough to fit into the onboard memory.

Numerous studies have also focused on simulating quadcopter flight mechanics, using
tools like Matlab [6], Microsoft AirSim [7], and Gazebo [30–32] to enhance the development
and testing of autonomous drone systems. The authors of [13] exploited the MatLab Simulink
environment to develop a real-time Hardware-In-the-Loop flight simulation system that allows
control systems design, testing, and UAV model validation.



Application of artificial neural networks and NEAT algorithm to control a quadcopter 45

Furthermore, Microsoft AirSim has emerged as a powerful platform for simulating quad-
copter flight in realistic environments. The work [14] presents a simulation platform designed
for efficient algorithm prototyping and machine learning research in the complex field of
autonomous drone racing. In our solution, we used Gazebo as our simulation platform. Works
[30–32] presents promising approaches in accurate UAV simulation. However, none of them
are capable of integration with genuine flight control software.

3 The Proposed Method Overview

In this work, we have developed a system capable of training Artificial Neural Networks for the
task of piloting realistically simulated drones. Our approach uses the NEAT algorithm to train
ANNs and monitor their progress in a 3D graphical environment. Our resulting framework
allows users to control the training process and to create various experimental scenarios.
These scenarios enable the observation of UAV behavior and the exploration of how different
network topologies and activation functions impact the training process.
To facilitate this, we have adapted the physics-based drone simulation environment, Gazebo
[37], which can accommodate many drone configurations.

Additionally, we have integrated Betaflight SITL [36] as the Flight Controller software,
although any other controller supporting MultiWii Serial Protocol could also be use. To
ensure real-time visualization and communication between simulated UAVs and the evaluation
environment, we use Unity 3D [43]. To address the need for parallel training and evaluation
of multiple simulated quadcopters, we have leveraged Docker containerization [12] of our
Gazebo simulation instances.

3.1 Physics-based Drone Simulation using Gazebo

Gazebo [37] is a widely used open-source simulation environment providing a multi-purpose
platform for developing and testing robots and autonomous systems. It provides a realistic
3D simulation environment, allowing researchers and developers to accurately model and
visualize complex scenarios. A key feature that makes Gazebo powerful is its integration with
the Open Dynamics Engine (ODE) [38] physics engine. ODE is responsible for providing
robust and efficient physics simulation, enabling realistic interactions between objects and
their environment within the simulation. The combination of Gazebo and ODE provides a
comprehensive toolset for simulating a wide range of robotic tasks, from simple mechanical
motions to complex multi-agent systems.

In our solution to accurately model and simulate UAVs, we use Gazebo (see. 2) as the
simulation platform. Gazebo allows the creation of sophisticated simulation environments
using its SDF world file format [39]. In our approach integrate and adapt other software
that plays an essential role in the task of quadcopter simulation. One of these is Betaflight
SITL [36] - a full-featured flight controller software responsible for generating motor speed
commands via a PID loop.

Other key components of our framework are modified elements from the Vehicle Gateway
project [40], which also incorporates some parts of the ArduPilot Gazebo Plugin [41]. The
main module, called Gazebo Communication Plugin (see Fig. 2), acts as a bridge between



46 M. Przychodzki, A. Niewiadomski

Figure 2. Simulation architecture and data flow diagram. Source: original work.

Gazebo simulation, Betaflight Software-In-The-Loop (SITL) [36], and the NEAT-based train-
ing application, which delivers RC radio commands generated by ANN based on simulated
drone state computed by Gazebo.

3.2 Using an Artificial Neural Network to Control a Drone

Our solution utilises an artificial neural network to generate raw RC channel values for the
throttle, yaw, pitch, and roll axes (MSP Data). These RC values are then transmitted via an MSP
communication link directly to the Gazebo drone simulation (refer to Fig 3, left), enabling
the flight controller software to perform calculations. The simulation engine computes a new
state of the drone based on the updated motor speed values (EPWM).

In Our solution, the input layer of ANN is fed with raw, unfiltered data directly from a
simulated drone’s onboard IMU sensor. This sensor generates triaxial linear acceleration and
triaxial gyroscope values (IMU Data) in the UAV body frame. Thus, the input layer consists
of six neurons, one for each axis of these IMU sensors.

The output layer consists of four neurons representing the RC channel values of throttle,
yaw, pitch, and roll axis. The output values are mapped from the range [0, 1] to [900, 1900],
in accordance with the MSP protocol regarding the raw values of the RC control channels.
This method of presenting control signals to FC software ensures compatibility with any other
MSP-compatible flight controller. It is important to note that hidden layers are not specified,
as they will evolve alongside new connections and weight values during the neuroevolution
process.

3.3 Implementation of the Framework

We present a configurable UAV simulation environment that allows the modeling of many
different drones using various FC software and the parallel evaluation of Agents. To this aim,
we use the Unity 3D game engine [43] to create a 3D application hosting Active Containers
Manager (ACM), Agent Evaluation Environment (AEE), and the NEAT algorithm imple-
mented using UnitySharpNEAT library [44, 45] (see Fig 3 right, Fig. 4). ACM is responsible
for managing the pool of simulation containers [12, 1] handling isolated instances of Gazebo



Application of artificial neural networks and NEAT algorithm to control a quadcopter 47

Figure 3. Left: ANN in the drone flight control process, right: architecture of the training application.
Original work

simulation. The SharpNEAT library is responsible for generating ANNs by following the steps
of the NEAT algorithm. AEE subsystem is responsible for evaluating agent performance in a
simulated environment. Together with the ACM, they perform agent evaluation and simula-
tion container management. They also allow users to configure various available options and
settings1. Some of them are covered in the next subsection.

Figure 4. Unity training application during population evaluation. Original work

3.4 Fitness Function

As NEAT is a genetic algorithm variant, the fitness function is crucial for its proper operation.
The fitness value indicates how well the agent is adapted to a given task. Our goal is to create
and train an artificial neural network (ANN) capable of remaining airborne and performing
the hover maneuver. To achieve this goal, we consider several factors when calculating the

1A detailed description of all available parameters is beyond the scope of this paper. For more details
see [1].



48 M. Przychodzki, A. Niewiadomski

fitness value, including the total time spent in the air, the distance from the designated point,
the ability to remain close to the target, and the avoidance of undesirable behavior such as
sharp and sudden maneuvers, flipping, or flying away.

Table 1. Variables and constraints used to calculate the fitness values. Symbol ’∼’ denotes values
calculated during computation. Original work

Parameter Name Description Value
𝑇𝐴𝑣 Total time the agent is alive ∼
𝐴𝑣𝑔𝐷𝑣 Average distance to target ∼
𝑀𝑖𝑛𝐷𝑣 Minimal distance to target ∼
𝑇𝐻𝑣 Total time hovering near target ∼

𝑀𝑎𝑥𝑇𝑔𝐷𝑐 Maximum allowed distance to target 4 [m]
𝑇𝑚𝑖𝑛𝐻𝑐 Minimal time required in hover near target 1 [s]
𝑀𝑎𝑥𝑇𝐴𝑐 Expected time of an agent in the air 45 [s]
𝐴𝑙𝐸𝑥𝑒 Counter increased when required alignment angle with forward axis is exceeded ∼
𝐺𝑑𝐶𝑜𝑙𝑒 Counter increased when agent crashed to the ground ∼
𝐷𝑒𝐸𝑥𝑒 Counter increased when agent exceed maximum allowed deflection angle ∼
𝐵𝐵𝐶𝑜𝑙𝑒 Counter increased when agent collided with simulation bounding box ∼

To calculate the fitness value, several variables and constants are introduced. Table 1
presents values collected during simulations (denoted by the index 𝑣), constraints expressing
our expectations towards agents (marked with 𝑐), and event counters (index 𝑒). Table 2 presents
the reward and penalty values, denoted by 𝑟 and 𝑝 , respectively. The parameter values used and
the final fitness function presented below were developed through preliminary experiments
and observations.

Table 2. Reward and penalty values used to calculate agents’ fitness. Original work

Parameter name Description Value
𝑇𝐴𝑟 Time alive multiplier, the reward for each second of flight 15
𝐴𝑣𝑔𝐷𝑟 Maximal reward for average distance 200
𝑀𝑖𝑛𝐷𝑟 Maximal reward for minimal distance 50
𝑇𝐻𝑟 Maximal reward for total time in hover 300
𝑀𝑖𝑛𝐻𝑟 Minimal reward for total time in hover 30
𝑆𝑉𝑟 Reward for spending an expected time in the air 200

𝐷𝑒𝑂𝑘𝑟 Reward for not exceeding maximum allowed angles 35
𝑁𝑜𝐺𝑑𝐶𝑜𝑙𝑟 Reward for not crashing to the ground (but collided with the boundary box) 10
𝑁𝑜𝐶𝑜𝑙𝑠𝑟 Reward for avoiding all collision types 60
𝐴𝑙𝐸𝑥𝑝 Penalty for exceeding required alignment angle with forward axis -120
𝐷𝑒𝐸𝑥𝑝 Penalty for exceeding maximum allowed angles -100
𝐺𝑑𝐶𝑜𝑙𝑝 Penalty for collision with the ground -80
𝐵𝐵𝐶𝑜𝑙𝑝 Penalty for collision with the simulation boundary -130

The fitness function that evaluates whether the drone is hovering steadily near the target is
the sum of 11 values. Each value rewards the agent for correct behavior, increasing the fitness
value, or punishes the agent for performing wrong maneuvers, decreasing the fitness value.
The first value 𝑭𝒕1 (see Eq. 1) maximizes the total lifespan of agents. This is crucial to promote



Application of artificial neural networks and NEAT algorithm to control a quadcopter 49

individuals with longer lifetimes, particularly at the beginning of a new population when most
agents quickly crash. The values 𝑭𝒕2 and 𝑭𝒕3 work in similar way rewarding shorter average
distance and minimal distance to the target achieved during a flight, respectively.

𝑭𝒕1 = 𝑇𝐴𝑣 · 𝑇𝐴𝑟 ; 𝑭𝒕2 = 𝐴𝑣𝑔𝐷𝑟 ·
(
1 − 𝐴𝑣𝑔𝐷𝑣

𝑀𝑎𝑥𝑇𝑔𝐷𝑐

)
; 𝑭𝒕3 = 𝑀𝑖𝑛𝐷𝑟 ·

(
1 − 𝑀𝑖𝑛𝐷𝑣

𝑀𝑎𝑥𝑇𝑔𝐷𝑐

)
(1)

The value 𝑭𝒕4 awards more points to agents that remain in close proximity to the target.
This encourages agents to stay close to the target without unnecessary movement. The ultimate
goal of all agents is to stay alive for the entire duration of the 𝑀𝑎𝑥𝑇𝐴𝑐 evaluation and to hover
as close to the target as possible. The 𝑇𝑚𝑖𝑛𝐻𝑐 condition also allows us to discard agents that
fly through the target position and crash immediately, resulting in a higher score because their
total lifespan was short. We can discourage fly-through behaviour by requiring agents to stay
very close to the target for a minimum amount of time.

𝑭𝒕4 =


(𝑇𝐻𝑣

𝑇𝐴𝑣

· 100
)
· 𝑇𝐻𝑟 , if 𝑇𝐻𝑣 ≥ 𝑇𝑚𝑖𝑛𝐻𝑐

𝑀𝑖𝑛𝐻𝑟 otherwise
𝑭𝒕5 =

{
𝑆𝑉𝑟 , if 𝑇𝐴𝑣 ≥ 𝑀𝑎𝑥𝑇𝐴𝑐

0, otherwise
(2)

Equations 2 and 3 present expressions that conditionally award or punish agents for
registered positive and negative events. 𝑭𝒕5 awards agents for long time spent in the air, while
𝑭𝒕6 and 𝑭𝒕7 give penalties when agents try to flip or fly aside suddenly.
Those behaviors are undesirable because a sudden flip or side maneuver will result in a
spinning, fly away, or crash scenario.

𝑭𝒕6 =

{
𝐴𝑙𝐸𝑥𝑝 , if 𝐴𝑙𝐸𝑥𝑒 ≥ 1
0, otherwise

𝑭𝒕7 =

{
𝐷𝑒𝐸𝑥𝑝 , if 𝐷𝑒𝐸𝑥𝑒 ≥ 1
𝐷𝑒𝑂𝑘𝑟 , otherwise

(3)

The next two components (Eq. 4) are focused on heavily penalizing crashing to the ground
or colliding with the simulation boundary. Next, 𝑭𝒊𝒕10 and 𝑭𝒕11 are special condition rewards
promoting collision avoidance.

𝑭𝒕8 =

{
𝐺𝑑𝐶𝑜𝑙𝑝 , if 𝐺𝑑𝐶𝑜𝑙𝑒 ≥ 1
0, otherwise

𝑭𝒕9 =

{
𝐵𝐵𝐶𝑜𝑙𝑝 , if 𝐵𝐵𝐶𝑜𝑙𝑒 ≥ 1
0, otherwise

(4)

𝑭𝒕10 =


𝑁𝑜𝐶𝑜𝑙𝑠𝑟 , if

{
𝐵𝐵𝐶𝑜𝑙𝑒 ≤ 0
∧ 𝐺𝑑𝐶𝑜𝑙𝑒 ≤ 0

0, otherwise

𝑭𝒕11 =


𝑁𝑜𝐺𝑑𝐶𝑜𝑙𝑟 , if

{
𝐺𝑑𝐶𝑜𝑙𝑒 ≤ 0
∧𝐵𝐵𝐶𝑜𝑙𝑒 ≥ 1

0, otherwise

(5)

Finally, the fitness value is calculated as the sum:

𝑭𝒊𝒕𝒏𝒆𝒔𝒔 =
11
∑︁

𝒊=1
𝑭𝒕𝒊 (6)



50 M. Przychodzki, A. Niewiadomski

4 Preliminary Experimental Results

This section reports the preliminary results of three series of experiments that demonstrate the
impact of three different activation functions on the training efficiency of ANNs: Steepened
Sigmoid, Plain Sigmoid, and Gaussian. As NEAT, like any other genetic algorithm, is non-
deterministic, the results presented are the average values of several runs for every activation
function, as obtaining the same result is only possible once. Subsequent experiments were
conducted in the fixed environment2, and their results are shown below. The collected statistics
were analyzed, including the average and best fitness values in subsequent generations. and
the number of quadcopters that were able to stay in the air.

4.1 Experiment 1: Steepened Sigmoid

Generation

Fi
tn

es
s 

fu
nc

tio
n 

va
lu

e

N
um

be
r o

f A
ge

nt
s

0

250

500

750

1000

1250

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 10
0

Agents finished successful Average best fitness Average population fitness

Each generation consist of 40 Agents

Average fitness function value throughout five generations - Steepened Sigmoid activation functions

Figure 5. Exp. 1 - Basic statistics of hover training using steepened sigmoid activation function. Original
work

The first experiment utilized a steepened sigmoid activation function (defined in Eq. 7)
with effective input and output range of [−1, 1] and [0, 1], respectively. The experiment
consisted of five runs, each with 100 generations. The population size was set to 40, and
overall 20000 individuals were evaluated during the experiment. The total evaluation time of
one run was 10 hours and 32 minutes on average.

𝑓 (𝑥) = 1
1 + 𝑒 (−4.9𝑥 ) (7)

Fig. 5 presents the average statistics collected during the experiment. The x-axis indicates
consecutive generations. The fitness function values are displayed on the left Y-axis. The red

2The experiments were performed on a server equipped with two Intel Xeon Gold 6234 @ 3.30GHz
CPUs and 64GB of RAM running Rocky Linux 8.8.



Application of artificial neural networks and NEAT algorithm to control a quadcopter 51

Generation

N
um

be
r o

f A
ge

nt
s

C
om

pl
ex

ity
 v

al
ue

0

5

10

15

20

25

0

1

2

3

4

5
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 10
0

Agents crashed to the ground Agents angles exceeded Agents alignement angle excited Average ANN complexity

Each generation consist of 40 Agents

Average events count throughout five generations - Steepened Sigmoid activation functions

Figure 6. Average event count through generations - Steepened Sigmoid activation function, Original
work

line (with stars) shows the average fitness function value of the best individual computed over
all runs in subsequent generations, while the yellow line (with squares) represents the average
fitness function value for the entire population. The blue bars represent the average number of
agents that successfully completed the task by hovering steadily and long enough in the target
area. The number of individuals is indicated on the right Y-axis. Upon analyzing Fig. 5, it is
evident that Experiment 1 was successful. The methodical increase of all mentioned indicators
leads to the conclusion that selecting the steepened sigmoid as activation function allows to
train agents able to hover steadily.

These conclusions are supported by further observations summarized in Fig. 6.
It presents three statistics related to the average number of agents that crashed to the ground
(the blue line with stars), exceeded the maximum allowed deflection angle (the red line with
squares), and alignment angle (the yellow line with diamonds) of the drone. The values
are marked on the left Y-axis. The line in green with pentagons represents the average
complexity3 of the ANN individual, and the correponding values are marked on the right
Y-axis. It is evident that as the complexity of ANN increases, the number of drones that
behave incorrectly decreases. At the start of a run, when brand new ANNs are randomly
created without a proper structure to handle the input signals, most agents fall to the ground.
However, as the complexity of the ANN increases in subsequent generations, agents are able
to respond to IMU values and gradually generate proper RC channel values. This process is
illustrated in Fig.5 by the crossing of the blue and red lines (marked with stars and squares,
respectively) starting in generation 13.

Experiment 1 demonstrates that the steepened sigmoid activation function is a suitable
choice for this type of training. Additionally, we have confirmed that the implemented frame-
work, which incorporates the NEAT algorithm and simulation environment, is functioning
properly. The NEAT algorithm rapidly evolved solutions capable of hovering near the target
for the required duration. Based on this observation, the authors concluded that running exper-

3The function assessing complexity of ANN has been defined originally in [21].



52 M. Przychodzki, A. Niewiadomski

iments beyond 60 generations is unnecessary, as only minor improvements in agent behavior
occurred after that point.

4.2 Plain Sigmoid

𝑓 (𝑥) = 1
1 + 𝑒 (−𝑥 )

(8)

Generation

Fi
tn

es
s 

fu
nc

tio
n 

va
lu

e

N
um

be
r o

f A
ge

nt
s

0

100

200

300

400

500

600

700

0,00

0,25

0,50

0,75

1,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Agents finished successful Average best fitness Average population fitness

Each generation consist of 40 Agents

Average fitness function value throughout four generations - Plain Sigmoid activation functions

Figure 7. Experiment 2 - basic statistics of hover training using plain sigmoid activation function,
Original work

In the second experiment, we utilized the plain sigmoid activation function defined in
Eq. 8 with effective input and output range of [−5, 5] and [0, 1], respectively.
The experiment included 4 runs, each with 60 generations. The population size was set to 40,
and a total of 9600 individuals were evaluated during the experiment. On average, one run
took 4 hours and 52 minutes to complete.

Fig. 7 presents average statistics collected during the experiment, similar to the previous
case. From the analysis, it is clear that the simple sigmoid activation function performed
significantly worse than the steepened sigmoid activation function. Fewer agents were able to
complete the goal, and the best and average fitness values were much lower. For instance, the
maximal fitness value for a plain sigmoid was approximately 600, whereas for a steepened
sigmoid, it exceeded 1000.

Fig. 8 shows that over time, an increasing number of agents were able to create the
necessary structure to analyze IMU input signals and fly, as evidenced by the systematic
decrease in crashes (the blue line). However, the agents tended to perform rapid maneuvers
that exceeded the allowed angles, resulting in a lower total score.

4.3 Gaussian

𝑓 (𝑥) = 𝑒−(2.5𝑥 )2
(9)

The third experiment utilized the Gaussian activation function, as defined in Eq. 9, with
the effective input range of [−1, 1] and the output range of [0, 1]. The experiment consisted



Application of artificial neural networks and NEAT algorithm to control a quadcopter 53

Generation

N
um

be
r o

f A
ge

nt
s

C
om

pl
ex

ity
 v

al
ue

0

5

10

15

20

25

0

1

2

3

4

5
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 36 38 40 42 44 46 48 50 52 54 56 58 60

Agents crashed to the ground Agents angles exceeded Agents alignement angle excited Average ANN complexity

Each generation consist of 40 Agents

Average events count throughout four generations - Plain Sigmoid activation functions

Figure 8. Exp. 2 - Average event count through generations - Plain Sigmoid activation function, Original
work

of four runs, each with 60 generations. The population size was set to 40,
resulting in a total of 9600 individuals evaluated throughout the experiment. On average, each
run took 5 hours and 4 minutes to complete. The results indicate that the Gaussian activation
function performed considerably worse than the two previous activation functions.

The goal of achieving a stable hover near the target was not accomplished by any of the
agents, and the overall fitness values were the lowest. The best fitness value achieved was
approximately 150, while the average fitness did not exceed 100. These low fitness values
indicate that the agents had extremely short life spans, as they were either crashing instantly
or attempting illegal maneuvers upon taking control of the quadcopter.
Based on this result, it can be concluded that the Gaussian activation function is not suitable
for processing IMU input data.

5 Conclusions and Future Work

We have presented the approach for training Artificial Neural Networks to control
a quadcopter in the Gazebo environment and perform basic autonomous maneuvers.
To achieve this, we utilized the NEAT algorithm and implemented a distributed framework
that enables users to control and observe the training process in real-time. We conducted a
series of experiments and obtained encouraging results. The experiments are a validation of
the correctness and robustness of the implementation.

As a future work, we plan to explore alternative activation functions and tackle more
demanding scenarios, including wind and advanced maneuvers. Nevertheless, our ultimate
objective is to transfer the trained ANN onto a physical drone and validate the results in
real-world conditions.

References
1. Przychodzki, M. Zastosowanie sztucznych sieci neuronowych do kontroli bezzałogowych statków

powietrznych. (Siedlce University of Natural Sciences,2023,9)



54 M. Przychodzki, A. Niewiadomski

2. Rosenblatt, F. Principles of neurodynamics: Perceptions and the theory of brain mechanisms.
(Spartan,1962)

3. Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating errors.
Nature. 323 pp. 533-536 (1986), https://api.semanticscholar.org/CorpusID:205001834

4. Maaloul, B. & Elloumi, S. Adaptive PID Controller of a Quadrotor. 2023 IEEE International
Conference On Advanced Systems And Emergent Technologies. pp. 1-6 (2023)

5. Tayebi, A. & McGilvray, S. Attitude stabilization of a four-rotor aerial robot. 2004 43rd IEEE
Conference On Decision And Control (CDC) (IEEE Cat. No.04CH37601). 2 pp. 1216-1221 Vol.2
(2004)

6. MATLAB version 7.10.0 (R2010a). (The MathWorks Inc.,2010)
7. Shah, S., Dey, D., Lovett, C. & Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation

for Autonomous Vehicles. Field And Service Robotics. (2017), https://arxiv.org/abs/1705.05065
8. AlMahamid, F. & Grolinger, K. Autonomous unmanned aerial vehicle navigation using reinforce-

ment learning: A systematic review. Engineering Applications Of Artificial Intelligence. 115 pp.
105321 (2022)

9. Duggal, V., Sukhwani, M., Bipin, K., Reddy, G. & Krishna, K. Plantation monitoring and yield esti-
mation using autonomous quadcopter for precision agriculture. 2016 IEEE International Conference
On Robotics And Automation (ICRA). pp. 5121-5127 (2016)

10. Patrick, O., Nnadi, E. & Ajaelu, H. Effective use of quadcopter drones for safety and security
monitoring in a building construction sites: Case study Enugu Metropolis Nigeria. Journal Of
Engineering And Technology Research. 12, 37-46 (2020)

11. Mohd Daud, S., Mohd Yusof, M., Heo, C., Khoo, L., Chainchel Singh, M., Mahmood, M. &
Nawawi, H. Applications of drone in disaster management: A scoping review. Science And Justice.
62, 30-42 (2022), https://www.sciencedirect.com/science/article/pii/S1355030621001477

12. Merkel, D. Docker: lightweight linux containers for consistent development and deployment. Linux
Journal. 2014, 2 (2014)

13. Lu, P. & Geng, Q. Real-time simulation system for UAV based on Matlab/Simulink. 2011 IEEE
2nd International Conference On Computing, Control And Industrial Engineering. 1 pp. 399-404
(2011)

14. Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E.,
Scaramuzza, D., Schwager, M. & Kapoor, A. AirSim Drone Racing Lab. Proceedings Of
The NeurIPS 2019 Competition And Demonstration Track. 123 pp. 177-191 (2020,12,8),
https://proceedings.mlr.press/v123/madaan20a.html

15. González Rodríguez, C. Development and assembly of a cinematography drone. (UPC, Escola Tèc-
nica Superior d’Enginyeria Industrial de Barcelona, Departament d’Enginyeria Electrònica,2019,6),
http://hdl.handle.net/2117/165496

16. Zhao, H. & Wang, Z. Motion Measurement Using Inertial Sensors, Ultrasonic Sensors, and Mag-
netometers With Extended Kalman Filter for Data Fusion. IEEE Sensors Journal. 12, 943-953
(2012)

17. Bezkorovainyi, Y. & Sushchenko, O. Improvement of UAV Positioning by Information of Inertial
Sensors. 2018 IEEE 5th International Conference On Methods And Systems Of Navigation And
Motion Control (MSNMC). pp. 123-126 (2018)

18. Sun, J. Modeling and analysis of pulse-width modulation. Professional Education Seminar At IEEE
Applied Power Electronics Conference, Austin, Texas, USA. (2008)

19. Gopalakrishnan, E. Quadcopter flight mechanics model and control algorithms. Czech Technical
University. 69 pp. 8-30 (2017)

20. Member of Multiwii community - Waltr New MultiwiiSerialProtocol-MultiWii.
Www.multiwii.com. (2011), ℎ𝑡𝑡 𝑝 : //𝑤𝑤𝑤.𝑚𝑢𝑙𝑡𝑖𝑤𝑖𝑖.𝑐𝑜𝑚/𝑤𝑖𝑘𝑖/𝑖𝑛𝑑𝑒𝑥.𝑝ℎ𝑝?𝑡𝑖𝑡𝑙𝑒 =

𝑀𝑢𝑙𝑡𝑖𝑤𝑖𝑖𝑆𝑒𝑟𝑖𝑎𝑙𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙



Application of artificial neural networks and NEAT algorithm to control a quadcopter 55

21. Stanley, K. & Miikkulainen, R. Evolving neural networks through augmenting topologies. Evolu-
tionary Computation. 10, 99-127 (2002)

22. Lambora, A., Gupta, K. & Chopra, K. Genetic Algorithm- A Literature Review. 2019 International
Conference On Machine Learning, Big Data, Cloud And Parallel Computing (COMITCon). pp.
380-384 (2019)

23. Lu, Y., Xue, Z., Xia, G. & Zhang, L. A survey on vision-based UAV navigation. Geo-spatial
Information Science. 21, 21-32 (2018)

24. O’Shea, K. & Nash, R. An introduction to convolutional neural networks. ArXiv Preprint
ArXiv:1511.08458. (2015)

25. Boden, M. A guide to recurrent neural networks and backpropagation. The Dallas Project. 2, 1-10
(2002)

26. Svozil, D., Kvasnicka, V. & Pospichal, J. Introduction to multi-layer feed-forward neural networks.
Chemometrics And Intelligent Laboratory Systems. 39, 43-62 (1997)

27. Rady, S., Kandil, A. & Badreddin, E. A hybrid localization approach for UAV in GPS denied areas.
2011 IEEE/SICE International Symposium On System Integration (SII). pp. 1269-1274 (2011)

28. Valenti, F., Giaquinto, D., Musto, L., Zinelli, A., Bertozzi, M. & Broggi, A. Enabling Computer
Vision-Based Autonomous Navigation for Unmanned Aerial Vehicles in Cluttered GPS-Denied
Environments. 2018 21st International Conference On Intelligent Transportation Systems (ITSC).
pp. 3886-3891 (2018)

29. Burman, P. & Others Quadcopter stabilization with neural network. (2016)
30. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U. & Von Stryk, O. Comprehensive simulation of

quadrotor uavs using ros and gazebo. Simulation, Modeling, And Programming For Autonomous
Robots: Third International Conference, SIMPAR 2012, Tsukuba, Japan, November 5-8, 2012.
Proceedings 3. pp. 400-411 (2012)

31. Zhang, M., Qin, H., Lan, M., Lin, J., Wang, S., Liu, K., Lin, F. & Chen, B. A high fidelity simulator
for a quadrotor UAV using ROS and Gazebo. IECON 2015 - 41st Annual Conference Of The IEEE
Industrial Electronics Society. pp. 002846-002851 (2015)

32. Sciortino, C. & Fagiolini, A. ROS/Gazebo-Based Simulation of Quadcopter Aircrafts. 2018 IEEE
4th International Forum On Research And Technology For Society And Industry (RTSI). pp. 1-6
(2018)

33. Stanley, K., Clune, J., Lehman, J. & Miikkulainen, R. Designing neural networks through neuroevo-
lution. Nature Machine Intelligence. 1, 24-35 (2019)

34. Perez, R., Arnal, J. & Jansen, P. Neuro-Evolutionary Control for Optimal Dynamic Soaring. AIAA
Scitech 2020 Forum., https://arc.aiaa.org/doi/abs/10.2514/6.2020-1946

35. Kim, E. & Perez, R. Neuroevolutionary Control for Autonomous Soaring. Aerospace. 8 (2021),
https://www.mdpi.com/2226-4310/8/9/267

36. Betaflight community Betaflight flight software. Betaflight., https://betaflight.com/docs/wiki, [Ac-
cessed: 2023]

37. Gazebo community Gazebo. Gazebo., https://gazebosim.org/docs, [Accessed: 2023]
38. Smith, R. ODE Physic Engine. Open Dynamics Engine., http://ode.org/ode-latest-userguide.html,

[Accessed: 2023]
39. Osrf What is SDFormat. SDFormat., http://sdformat.org/, [Accessed: 2023]
40. Osrf Osrf/vehicleGateway: A pluginlib-based C++ library that interfaces with several vehicle SDK’s.

GitHub., ℎ𝑡𝑡 𝑝𝑠 : //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑜𝑠𝑟 𝑓 /𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑔𝑎𝑡𝑒𝑤𝑎𝑦, [Accessed: 2023]
41. ArduPilot community ArduPilot/ARDUPILOT GAZEBO: Plugins and models for ve-

hicle simulation in gazebo SIM with Ardupilot SITL controllers. GitHub., ℎ𝑡𝑡 𝑝𝑠 :
//𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝐴𝑟𝑑𝑢𝑃𝑖𝑙𝑜𝑡/𝑎𝑟𝑑𝑢𝑝𝑖𝑙𝑜𝑡𝑔𝑎𝑧𝑒𝑏𝑜, [Accessed: 2023]

42. Liang, O. RC TX RX Protocols Explained: PWM, PPM, SBUS, DSM2, DSMX, SUMD (2015).
Oscarliang.com., https://oscarliang.com/pwm-ppm-sbus-dsm2-dsmx-sumd-difference/, [Accessed:
2023]



56 M. Przychodzki, A. Niewiadomski

43. Technologies, U. Unity 3D. Unity3D., https://unity.com/, [Accessed: 2023]
44. Green, C. ResharpNEAT libary. GitHub., https://github.com/colgreen/sharpneat, [Accessed: 2023]
45. Wolf, F. UnityResharpNEAT libary. GitHub., https://github.com/flo-wolf/UnitySharpNEAT, [Ac-

cessed: 2023]
46. ALLAIN, R. How Do Drones Fly? Physics, of Course!. Wired.,

https://www.wired.com/2017/05/the-physics-of-drones/, [Accessed: 2023]


