
Nr 2 (29)
STUDIA INFORMATICA

Systems and information technology 2023

Bartłomiej Starosta1

ORCID: 0000-0002-5554-4596

Mieczysław A. Kłopotek2

ORCID: 0000-0003-4685-7045

Sławomir T. Wierzchoń3

ORCID: 0000-0001-8860-392X

Institute of Computer Science of Polish Academy of Sciences
ul. Jana Kazimierza 5, 01-248 Warszawa, Poland.

{1barstar,2klopotek,3stw}@ipipan.waw.pl

Towards explainability of hashtags in the light of Graph
Spectral Clustering methods
DOI: 10.34739/si.2023.29.04

Abstract. Hashtags constitute an indispensable part of modern social media world. As
more and more hashtags are invented, it becomes a necessity to create clusters of these
hashtags. Nowadays, however, the clustering alone does not help the users. They are
asking for justification or expressed in the modern AI language, the clustering has to
be explainable. We discuss a novel approach to hashtag explanation via a measure of
similarity between hashtags based on the Graph Spectral Analysis. The application of
this similarity measure may go far beyond the classical clustering task. It can be used to
provide with explanations for the hashtags. In this paper we propose such a novel view
of the proposed hashtag similarity measure.

Keywords: Graph Spectral Analysis, hashtag similarity, eigenvalue spectrograms, Ex-
plainable Artificial Intelligence
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1 Introduction

In recent years, several word embedding methods like Doc2Vec [62] or BERT [61] have been
proposed. The idea behind those methods is to represent words in a high dimensional space
(embedding space)) taking into account the context in which the words occur. Small distance
between two words in the embedding space is usually related to their semantic similarity. This
property can be exploited under various settings. One example is an explanation of one word
in terms of the word or words lying closely to it in the embedding space. If a classification
algorithm is based on the representation in the embedding space, then the decision boundaries
can be explained in terms of words close to these boundaries. By analogy, the same can be
said about the results of clustering performed in the embedding space.

Over the last decades a kind of a new “human” language, the language of hashtags is
under development, along with various processing techniques. One could be tempted to try
to develop a similar way of understanding hashtags in terms of other hashtags. For example,
one could take a collection of texts with hashtags, remove normal words, and then train
aforementioned models on “text” consisting of hashtags alone. However, this is not that
simple because generally, the hashtags occur very sparsely in e.g. tweets so that mentioned
models like Doc2Vec or BERT are barely applicable.

Therefore, we look at another way of hashtag embedding. This embedding should allow
to explain one hashtag in terms of other hashtags in a manner similar to word explanation
based on e.g. Doc2Vec. By analogy, such an embedding could also be used to explain decision
boundaries for classification and clustering methods in terms of hashtags. We demonstrate
that Graph Spectral Analysis of documents labeled with hashtags can be a foundation for such
an embedding.

Cluster Analysis, particularly Graph Spectral Clustering (GSC), like the entire domain
of Artificial Intelligence, has experienced rapid development in recent years. Algorithms of
growing complexity and efficiency were provided, but regrettably they are characterized by
“black-box nature”. Hence their results are hard to understand by human users. Therefore there
exists a growing resistance to their application in practical settings. Business and industry
requested justifications of decisions suggested by AI systems. This expectation of client of AI
systems led to the development of a branch of AI called “Explainable Artificial Intelligence”
(XAI) [59], with subbranches including Explainable Clustering [60].

The “black box” problem is more grievant in cluster analysis, compared e.g. to the clas-
sification tasks, because the very essence of the concept of “cluster” is not well defined.
This is even though the scientific research area of cluster analysis, has nearly a century-long
history. Hundreds of clustering algorithms have been developed and countless applications
are reported.

Though there exist some approaches for cluster explanations like [57] that are applied to the
outcome of spectral clustering, they are not based on the actual principles of spectral clustering,
but rather on cluster approximation with some other algorithms. There exist explanation
methods to components of spectral clustering, that is to 𝑘-means [58] but they are insufficient
to explain the outcome of spectral clustering.

The so-called Graph Spectral Analysis (GSA)1 stands for a novel way of looking into
relationships between data objects that are characterized by mutual similarity measures, and

1GSA encompasses Graph Spectral Clustering (GSC) and Graph Spectral Classification (GSL).
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hence can be best described by a graph with weights equal to those similarities. The GSA
procedure consists of the following steps: First, the similarity matrix is transformed to a
combinatorial or normalized Laplacian, which in turn is subject to eigen-decomposition.
Eigenvectors constitute a new coordinate system into which the data objects are embedded
and thus may be subject of distance-based data clustering [55, 63] or data classification
methods [22, 21]. In particular, this approach is used with hashtags [1].

While the main stream of research concentrates on the usage of a carefully selected subset
of eigenvalues and corresponding eigenvectors, the research in this paper took a different path.
We investigate properties of the entire set of eigenvalues, as initiated by [26, 66].

This paper aims at an easy introduction to that approach, and based on it, we suggest a way
of explaining hashtags by other hashtags which sheds a completely new light on the research
reported in [64].

2 Brief introduction to Graph Spectral Clustering

Let us briefly recall that GSC methods are deemed to be a relaxation of cut-based graph
clustering methods. A matrix 𝑆, called a similarity matrix, represents similarities between
pairs of items (e.g. tweets), with entries ranging from 0 to 1. It induces a graph whose nodes
correspond to the items. This graph is assumed to be without self-loops (even though an item
is most similar to itself). Hence the diagonal of 𝑆 is assumed to be filled with zeros (see
e.g. [56] as one example of many). Let 𝑛 denote the number of items for which 𝑆 has been
computed.

A combinatorial Laplacian 𝐿 corresponding to the matrix 𝑆 is defined as

𝐿 = 𝐷 − 𝑆, (1)

where 𝐷 is the diagonal matrix with 𝑑 𝑗 𝑗 =
∑𝑛

𝑘=1 𝑠 𝑗𝑘 for each 𝑗 = 1, . . . 𝑛. A normalized
Laplacian L of the graph represented by 𝑆 is defined as

L = 𝐷−1/2𝐿𝐷−1/2 = 𝐼 − 𝐷−1/2𝑆𝐷−1/2. (2)

A random walk Laplacian L of a graph is defined as

L = 𝐿𝐷−1 = 𝐼 − 𝑆𝐷−1 (3)

Other Laplacians were also studied [63].
Their relationship to cut based clustering is as follows: The RCut criterion corresponds

to finding the partition matrix 𝑃𝑅𝐶𝑢𝑡 ∈ R𝑛×𝑘 that minimizes the formula 𝐻′𝐿𝐻 over the
set of all partition matrices 𝐻 ∈ R𝑛×𝑘 . Such formulated problem is NP-hard. That is why
we relax it by assuming that 𝐻 is a column orthogonal matrix. In this case the solution is
obvious: the columns of 𝑃𝑅𝐶𝑢𝑡 are eigenvectors of 𝐿 corresponding to 𝑘 smallest eigenvalues
of 𝐿. Similarly, the columns of matrix 𝑃𝑁𝐶𝑢𝑡 , representing NCut criterion, are eigenvectors
of L corresponding to 𝑘 smallest eigenvalues of L. For an explanation and further details see
e.g. [55] or [63].
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3 Method

As reported in [66], spectra of combinatorial Laplacian of random samples of the same hashtag
can be down-scaled to overlap, while those from different classes do not. The same applies
also to so-called normalized Laplacians (see Fig. 1).

Figure 1. Normalized spectrograms for samples of one single hashtag. Source: research presented in
[67]

Consider a similarity matrix 𝑆 between pairs of items (e.g. tweets). A combinatorial
Laplacian 𝐿 of 𝑆 was given by the equation (1).

Let its eigenvalues be sorted in non-decreasing order 0 = 𝜆1 ≤ · · · ≤ 𝜆𝑛.
Let us recall the function 𝜆𝑠𝑠𝑎 : [0, 1] → R such that [64]

𝜆𝑠𝑠𝑎

( 𝑛 − 𝑖

𝑛 − 1

)
=
𝜆𝑖

𝑛
. (4)

The linear interpolation is applied in-between the points 𝑛−𝑖
𝑛−1 and 𝑛−(𝑖+1)

𝑛−1 . 𝜆𝑠𝑠𝑎 is stable for
the group of tweets corresponding to the same hashtag, while it differs for groups of tweets
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labeled with different hashtags. Fig. 1 shows 𝜆𝑠𝑠𝑎’s for 10 samples of tweets with the same
hashtag.

Figure 2. Normalized spectrograms for samples of various hashtags. Source: research presented in [67]

Fig. 2 shows 𝜆𝑠𝑠𝑎’s of 34 samples of distinct ones.
Hence, a “distance” between a given new sample and the elements of a class is defined

as the area between the 𝜆𝑠𝑠𝑎 curves. So if the first subgraph 𝐺1 is characterized by 𝜆𝑠𝑠𝑎,𝐺1
curve, and the second subgraph 𝐺2 is characterized by 𝜆𝑠𝑠𝑎,𝐺2 curve, then the dissimilarity
is computed as

𝑑𝑖𝑠𝑠𝑖𝑚(𝜆𝑠𝑠𝑎,𝐺2, 𝜆𝑠𝑠𝑎,𝐺1) =
∫ 1

0
|𝜆𝑠𝑠𝑎,𝐺2 (𝑥) − 𝜆𝑠𝑠𝑎,𝐺1 (𝑥) |𝑑𝑥 . (5)

𝑑𝑖𝑠𝑠𝑖𝑚 may be successfully applied to classify a sample into one of the hashtags, as table
1 shows. For each hashtag 100 samples from 30% of its tweets were drawn and classification
via the smallest dissimilarity to the hashtag spectra was performed. Reasonable classification
was possible for up to 10 hashtags.
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Table 1. Classification errors and F1 measure for most distant hashtags. Source: research presented in
[67]

no. of hashtags 2 3 4 5 6 7 8 9 10 11
error % 0.00 1.33 1.75 0.60 4.83 7.00 9.75 9.22 8.20 9.82
F1*100 100.00 98.67 98.25 99.40 95.18 93.03 89.99 90.53 91.71 90.03
no. of hashtags 12 13 14 15 16 17 18 19 20 21
error % 14.17 16.77 19.07 18.47 20.75 23.53 26.22 30.47 26.90 29.38
F1*100 85.74 83.18 80.86 81.00 78.90 76.04 73.61 69.37 72.89 70.60

4 Results

We performed our research for a small collection of hashtags extracted from Twitter tweets.
Their names are listed in the first column of Table 2. It is a random sample of about 1% of
English tweets retrieved from the stream endpoint of Twitter API.

Table 2 gives an overview of stability of hashtag dissimilarities. For each hashtag from
the column hashtag, the column s.hashtag represents the closest hashtag. Their closeness
is characterized by the subsequent columns:

1. min.dist being the dissimilarity to it.
2. avg.dist presents the average dissimilarity of the given hashtag from the remaining

ones,
3. std.dist shows the standard deviation of dissimilarity.
4. subsamp.dist represents the average dissimilarity to 100 samples from the same hashtag
5. subsamp.err being the standard deviation of this measure
6. rel.subsamp.dist is the quotient of subsamp.dist / avg.dist.

rel.subsamp.dist demonstrates that in fact the samples from the same hashtag are closer
to one another than to other hashtags. The hashtag #lolinginlove seems to be most distant from
all the other hashtags on average, while #blacklivesmatter seems to be close to many other
hashtags from the list, in particular demonstration related hashtags. The hashtag #puredoctri-
nesofchrist seems also to be distant from the other, though it is quite near to #anjisalvacion.
#covid has a characteristic quite similar to #coronavirus which should not be surprising.
The average dissimilarity to other hashtags is 5 to 10 time bigger than the sampling variation
within a single hashtag.

A careful look at the hashtag similarities reveals a potential behind it that has not been
explored before. Note that from a human point of view, the examples demonstrate that one
hashtag explains the meaning of the other. Therefore, in general, hashtag similarity can be
used to explain a hashtag in terms of other hashtags. For example, #blacklivesmatter may be
explained as a term with commonalities with #demdebate and #endsars. #whatshappeningin-
myanmar on the other hand seems to be related to #bitcoin, #bbnaĳa.

This way of looking at explaining hashtags has a striking new feature: As in this study
we used tweets with only single hashtags, the obtained similarity measure is not based on the
co-occurrence of hashtags, but rather on their contextual occurrence. So a new meaning to the
explanation of one hashtag by other ones is invented. They are on a higher conceptual level.
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This is in contrast to the traditional way of explaining the contents of a cluster by the most
frequent words or phrases in the textual content. Here, to explain one hashtag, we use another
hashtag that was not present in the texts attached to the previous one. It differs also from
the word embedding approaches like Doc2Vec or BERT because the mentioned embeddings
assign similar vectors to words occurring close to one another in text, while the hashtags in
our embedding do not need to occur and usually do not occur in the same text. Still, another

Table 2. Closeness of hashtags based on eigenvalue spectrum. Source: research presented in [67]

hashtag s.hashtag min.dist avg.dist std.dist subs.dist subs.err rel.subs.dist
#1 #tejran 0.0080 0.0275 0.0201 0.0037 0.0022 0.1342
#100days ofcode #treasure 0.0069 0.0258 0.0210 0.0054 0.0028 0.2128
#90dayfiance #maga 0.0051 0.0230 0.0211 0.0036 0.0014 0.1599
#aewdynamite #demdebate 0.0015 0.0177 0.0213 0.0032 0.0013 0.1838
#anjisalvacion #tejass wiprakash 0.0108 0.0481 0.0244 0.0034 0.0018 0.0706
#auspol #coronavirus 0.0011 0.0175 0.0216 0.0029 0.0021 0.1655
#bbnaĳa #whatshap peningin

myanmar
0.0044 0.0217 0.0208 0.0015 0.0008 0.0716

#bitcoin #whatshap peningin
myanmar

0.0019 0.0204 0.0213 0.0023 0.0013 0.1162

#blacklives matter #demdebate 0.0018 0.0179 0.0213 0.0020 0.0012 0.1171
#breaking #justicefor sushants-

inghrajput
0.0016 0.0180 0.0209 0.0051 0.0039 0.2827

#cdnpoli #covid_19 0.0024 0.0190 0.0212 0.0039 0.0025 0.2052
#coronavirus #auspol 0.0011 0.0176 0.0216 0.0015 0.0005 0.0876
#covid #coronavirus 0.0018 0.0175 0.0215 0.0051 0.0022 0.2950
#covid_19 #cdnpoli 0.0024 0.0182 0.0212 0.0058 0.0040 0.3183
#covid19 #wweraw 0.0016 0.0186 0.0216 0.0020 0.0009 0.1092
#demdebate #aewdynamite 0.0015 0.0180 0.0213 0.0026 0.0012 0.1463
#endsars #blacklives matter 0.0026 0.0175 0.0213 0.0031 0.0015 0.1770
#justicefor sushants-
inghrajput

#breaking 0.0016 0.0180 0.0209 0.0043 0.0021 0.2396

#lolinginlove #nowplaying 0.0809 0.1135 0.0186 0.0003 1.1618e-05 0.0033
#loveisland #demdebate 0.0038 0.0184 0.0211 0.0019 0.0009 0.1032
#maga #cdnpoli 0.0040 0.0207 0.0212 0.0065 0.0038 0.3135
#mufc #coronavirus 0.0015 0.0180 0.0216 0.0023 0.0006 0.1284
#nowplaying #1 0.0301 0.0453 0.0137 0.0104 0.0042 0.2294
#nufc #mufc 0.0016 0.0183 0.0215 0.0039 0.0008 0.2148
#puredoctrines
ofchrist

#anjisalvacion 0.0133 0.0602 0.0250 0.0040 0.0016 0.0679

#smackdown #auspol 0.0026 0.0186 0.0213 0.0040 0.0014 0.2149
#tejass wiprakash #ukraine 0.0093 0.0385 0.0232 0.0048 0.0028 0.1268
#tejran #1 0.0080 0.0320 0.0193 0.0039 0.0015 0.1226
#tigraygenocide #bitcoin 0.0035 0.0214 0.0209 0.0043 0.0023 0.2039
#treasure #ukraine 0.0057 0.0278 0.0217 0.0030 0.0009 0.1103
#ukraine #treasure 0.0057 0.0309 0.0221 0.0054 0.0019 0.1760
#whatshap peningin
myanmar

#bitcoin 0.0019 0.0205 0.0213 0.0031 0.0010 0.1530

#writing community #maga 0.0042 0.0222 0.0209 0.0056 0.0032 0.2558
#wweraw #covid19 0.0016 0.0194 0.0215 0.0057 0.0035 0.2939

usage of the explanatory power of this new similarity measure can be an explanation of the
entire set of documents. One can for example seek the most distinct hashtags and present
them as a brief explanation of the entire document set. One can proceed as follows: The first
explaining hashtag would be one with the highest sum of dissimilarities to other hashtags.
The other can be selected based on the highest sum of dissimilarities to those already chosen.
The following list of 5 best explaining hashtags was obtained in this way for this collection:
#lolinginlove, #puredoctrinesofchrist, #anjisalvacion, #nowplaying, #tejran.
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5 Conclusions

We have proposed to provide explanations for topical groups of objects, like tweets, via a
characteristic spectrum of combinatorial Laplacian. It appears to be quite a stable descriptor
of samples from the same population, while discriminating different populations. With this
proposal, we go beyond the similarity measurement of hashtags, suggested in [64].

In particular, a group of documents sharing the same hashtag can be characterized by a
combinatorial Laplacian spectrogram. In this paper, we have demonstrated that such spectro-
grams can be used to look for similar or dissimilar hashtags. In this sense such a spectrogram
can be seen as a special vehicle for hashtag embeddings in hashtag processing, playing sim-
ilar role as word embeddings related to Doc2Vec or BERT like methods in natural language
processing. It has to be stressed that this method of hashtag embedding constitutes a nov-
elty compared to the mentioned and other conventional methods of word embedding. While
the conventional methods are focusing on word co-occurrence, our method does not require
hashtag co-occurrence for embedding computation.

Potential applications seem to be as ingredients in explainable classification and clus-
tering tasks as well as explainable data visualization and hashtag recommendation, that was
investigated in [2, 3].

We investigated the possibility of a novel way of hashtag embedding so that explainability
of hashtags, of classification and clustering results in terms of other hashtags can be achieved.
We demonstrated that Graph Spectral Analysis of documents labelled with hashtags can be a
foundation for such an embedding. In particular, in the context of hashtag recommendation,
the explainability of hashtags in terms of other hashtags is of interest. Note that in this study
we used tweets with only single hashtags so that the similarity measure is not based on the
co-occurrence of hashtags, but rather on their contextual occurrence. This attaches a new
meaning to the explanation of one hashtag by other ones. They are on a higher conceptual
level. One can think that if in a period of time a group of people, inducing a group style of
writing, is interested in several hashtags, then it is to be assumed that these hashtags have
something in common. This constitutes the foundation for the reasonability of explanation by
our method.

The explainable characterization of hashtags suggested here differs from the main stream
Graph Spectral Analysis performed so far as standard GSA concentrated on selected eigen-
values and eigenvectors.

Further research is necessary as to what causes this spectral behavior for similar and
different hashtags.
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