
Nr 2 (29)
STUDIA INFORMATICA

Systems and information technology 2023

Jerzy Tchórzewski1
ORCID: 0000-0003-2198-7185

Sebastian Rosochacki2
ORCID: 0009-0006-3514-0005

University of Siedlce
Faculty of Exact and Natural Sciences
Institute of Computer Science
ul. 3 Maja 54, 08-110 Siedlce, Poland

1jerzy.tchorzewski@uws.edu.pl,2s.rosochacki@protonmail.com

Selection of the programming environment for neural
modelling of the power and electricity demand generation
systems in terms of unmanned factories
DOI: 10.34739/si.2023.29.07

Abstract. The work concerns the selection of the programming language and environ-
ment for the needs of neural modeling of the power and electricity demand generation
system in terms of uninhabited factories. Therefore, the main goal of the conducted
research is to obtain the best possible Artificial Neural Network, i.e. to teach it a model
of a real system, which is a system for generating demand for power and electricity based
on numerical data on parts of the power system operation in terms of uninhabited facto-
ries. The learning capabilities of artificial neural networks were checked by comparing
the MSE error and the Regression Index R2. In each of the examined programming
languages and related programming environments, i.e. Matlab, Python and Wolfram,
an Artificial Neural Network with the same structure and properties was designed and
implemented, i.e. with the same number of input and output neurons, the number of



96 J. Tchórzewski, S. Rosochacki

hidden layers and the number of neurons in them, the activation function of neurons and
the learning method. In addition to the ANN training of the system model, testing and
validation as well as comparative studies were carried out.

Keywords: National Power System, MATLAB, Simulink, Python, Artificial Neural
Network, Wolfram Mathematica

1 Introduction

Currently, research on the functioning and development of intelligent systems and the in-
formation and communication technologies used to model them using stochastic methods,
machine learning and artificial intelligence methods are extremely important [16-19, 22-24,
26, 28-29, 37-39 , 41-42]. Intelligent systems are developing in various areas of the economy,
administration and society with the use of the whole wealth of artificial intelligence methods
[3-4, 19, 26, 33-34, 37, 42]. These include systems such as smart grid, smart power grid,
smart metering, unmanned systems or even uninhabited factories [29, 38-39]. One of the
models of such systems are neural models obtained in the form of artificial neural networks.
The process of creating an artificial neural network requires many design activities, including
the selection of a set of pairs of input quantities and output quantities related to them, on the
basis of which the structure of the Artificial Neural Network is then designed, i.e. its layers of
neurons and connections between them together with assigning them appropriate parameters
such as weights and biases as well as neuron activation functions. The next step is the selection
of the learning method and the selection of the programming language and the associated
programming environment, which is to lead to ANN learning with the use of learning pairs
in accordance with the given quality measure. The process is repeated until the ANN quality
measure is met [1, 4, 22-24, 33-34, 42]. In recent years, many practical methods of learning
and assessing ANN quality have been developed, including system models [3, 19, 26, 29, 37],
and even algorithms for automatic selection of ANN structure [22-23]. However, scientifically
justified methods of selecting the ANN learning method for the designed task, as well as the
selection of the programming language and the programming environment associated with it,
have not been published. This article addresses this research problem using two ANN learning
methods, i.e. the Levenberg-Marquardt (LM) method and the ADAM method [2, 4-5, 9, 13-16,
24-25, 30, 32, 42]. and three programming environments: MATLAB with Matlab, PYTHON
with Python and Mathematica with Wolfram [6-8, 10-11, 17, 20-21, 31, 40].

2 Research experiments

2.1 The structure of numerical data

To conduct a research experiment consisting in learning the Perceptron Artificial Neural Net-
work a model of a smart system, numerical data from the National Power System recorded
every hour of the day in the period from 01/04/2020 to 30/04/2022 was used, i.e. numerical data
concerning: the volume of electricity [MWh] by generating units Centrally Dispatched Gener-
ating Units (CDGU, Polish: JWCD), which are subject to the supervision of the Transmission



Selection of the programming environment for neural modelling... 97

System Operator; volume of electricity produced [MWh] by generating units generating units
which are not Centrally Dispatched Generating Units (nCDGU, Polish: nJWCD), which are
not subject to the supervision of the Transmission System Operator; Domestic Power Demand
(DPD) [MW] used by all participants of the National Power System (NPS) [12, 27, 36, 38].
The data was subjected to special preprocessing, e.g. an equal and repeating number of hours
in daily reports was adopted, making the experiment immune to the change of time from
summer to winter and vice versa from winter to summer. In addition, data for the purposes
of learning, testing and validating artificial neural networks were normalized by dividing
individual numerical values for a given hour by the sums resulting from all hours of the day.
Then, for the purposes of research experiments, the data was further divided into 10 periods
of 365 days (contractual annual periods) with the structure listed in Table 1 [27-28, 38].

Table 1. Division of the National Power System data into research experiments in a rolling system.
Source: own elaboration using works [27-28, 38]

Experiment number Beginning data End data
E1 01.04.2020 30.03.2021
E2 01.05.2020 30.04.2021
E3 31.05.2020 30.05.2021
E4 30.06.2020 29.06.2021
E5 30.07.2020 29.07.2021
E6 29.08.2020 28.08.2021
E7 28.09.2020 27.09.2021
E8 28.10.2020 27.10.2021
E9 27.11.2020 26.11.2021
E10 27.12.2020 26.12.2021

2.2 Artificial Neural Network Architecture

For the purpose of designing the Artificial Neural Network, 48 input quantities and 24 output
quantities were adopted. The input values are: daily summary generation of CDGUs sepa-
rately for each hour of the day (24 quantities) and daily summary generation of nCDGUs
separately for each hour of the day (24 quantities), and the output values are daily domestic
power demand separately for each hour of the day (24 values). In this way, an ANN with 48
inputs and 24 outputs was obtained [27-28].

Then, after the preliminary analysis, one hidden layer was assumed, and the number of
neurons in this layer was selected using the Sartori method [30] and the method of Taimura
and Tateishi [35], setting their number as 2/3 of the neurons of the input layer, i.e. 32 neurons.
As a result of preliminary research experiments in the MATLAB and Simulink environments,
their number was finally set at 34 neurons. In addition, the hyperbolic tangent was assumed
for the neuron activation function in the hidden layer, and the linear neuron activation function
in the output layer.



98 J. Tchórzewski, S. Rosochacki

2.3 Purpose of conducting research experiments

It was assumed that the main purpose of the conducted research experiments is to compare
the performance of programming languages and programming environments using two algo-
rithms for learning artificial neural networks, i.e. the Levenberg-Marquardt algorithm, used
e.g. electricity consumption in Greece [16] and the ADAM algorithm, which is an algorithm
used in the TensorFlow environment and in the MATHEMATICA environment [7, 10-11,
18, 31, 40]. Comparative analysis using the Levenberg-Marquardt algorithm was carried out
using the Matlab language and the Python language, while the comparative analysis using
the ADAM algorithm was performed using the Python language and the Wolfram language.
Due to the lack of a default implementation of the Levenberg-Marquardt algorithm in the
TensorFlow library, an implementation of the algorithm by Fabio Di Marco [10] was used.

Learning using the Levenberg-Marquardt algorithm was carried out using the maximum
number of epochs set at 760 and the early stop of the so-called early-stopping set to 5 epochs.
When learning using the ADAM algorithm, the time required to process one epoch was
clearly shorter compared to learning using the Levenberg-Marquardt algorithm, however,
training brought smaller changes in network quality. For this reason, 760 epochs turned out to
be insufficient to achieve satisfactory results, so the number was increased to 200,000 epochs,
and the number of early-stopping to the limit of 1,500 epochs. The learning speed coefficient
in the experimental way was set to 0.001, because its higher values caused a very unstable
learning process. Particular attention was paid to the courses of changes in the Regression
Index R2 during learning, which are illustrated in Figure 1.

In addition, the sample size was increased to 256 to compensate for the impact of low-
quality data on the weights of the learning Artificial Neural Network due to the fact that their
impact needed to be strengthened due to dividing the data into smaller sets for further research
experiments.

3 Comparison of programming languages due to the learning method

A comparison of three programming languages was carried out due to the mean square
error MSE and due to the Regression Index 𝑅2. The following programming environments
were selected for comparison: MATLAB, PYTHON and MATHEMATICA. Comparative
analysis of learning artificial neural networks was carried out for two learning methods, i.e.
for learning using the Levenberg-Marquardt algorithm and using the ADAM algorithm. In
the case of the Levenberg-Marquardt algorithm, a comparison was made of ANN learning
designed in Matlab and Python, and in the case of the ADAM algorithm, ANN learning in
Wolfram Language and Python was compared. In both cases, 10 research experiments were
carried out for the assumed 10 periods of NPS operation (Table 1). The ANN learning results
obtained in the case of the Levenberg-Marquardt algorithm are presented in Table 2, and in
the case of the ADAM algorithm - in Table 3. In addition, selected waveforms of the MSE
error obtained in the epoch after the sharp decline and the Regression Index R2 after the end
of the learning process for the Levenberg-Marquardt algorithm are presented in Figures 2-3
and for the ADAM algorithm in Figures 4-5.



Selection of the programming environment for neural modelling... 99

Figure 1. Courses of the Regression Index 𝑅2 during the learning process using the ADAM algorithm
at the learning coefficient lr=0.01 during the experiment 1. Designations: axis Y - Regression Index 𝑅2;
axis X - learning epoch number. Source: own elaboration using Matplotbib [20, 28].

Figure 2. The course of the MSE error after a sharp decrease in the ten periods of NPS operation under
the study for the LM method designed in Matlab and Python. Source: Own elaboration using [28].



100 J. Tchórzewski, S. Rosochacki

Figure 3. The course of Regression Index 𝑅2 for the LM method designed in Matlab and Python. Source:
Own elaboration using [28].

Figure 4. The course of the MSE error after a sharp decrease in the ten periods of NPS operation under
the test for the ADAM method designed in Wolfram and Python. Source: Own elaboration using [28].



Selection of the programming environment for neural modelling... 101

Figure 5. The course of the Regression Index 𝑅2 for the ADAM method designed in Wolfram and in
Python. Source: Own elaboration using [28].

It turned out that in the case of the LM method, the ANN learning of the NPS operation
is at a similar MSE error level both in the case of implementation in Matlab and in Python.
However, for the ANN implementation in Matlab, training is associated with a lower MSE
error after a sharp decline of 7.06 · 10−9 vs. MSE error of 22.1 · 10−9 for the Python
implementation. Moreover, in Experiment 6 in Python, the MSE error turned out to be much
higher, amounting to 1.05 · 10−7, which in Matlab was 7.34 · 10−9.

In addition, the ANN in Matlab needed only 8 epochs to achieve the required MSE error
rate, and the ANN in Python as many as 41 epochs. It is also worth noting that in the case of
the ANN implementation in Matlab, the Regression Index 𝑅2 was much better, at an average
level of 0.9577, while in Python it was only 0.7278 on average.
On the other hand, in the case of the ADAM method, the ANN learning of the NPS functioning
implemented in Python and Wolfram was at a similar level of MSE error, but in Python the
learning was associated with a slightly lower MSE error after a sharp decrease of 2.07 · 10−7,
which for the implementation in Wolfram was 2.27 · 10−7, taking place in the 9th epoch for
Python, compared to an average of 11 epochs for the implementation in Wolfram.



102 J. Tchórzewski, S. Rosochacki

4 Conclusions and directions for further research

The obtained research results summarized in Tables 2 and in Tables 3 indicate that the
Levenberg-Marquardt algorithm turned out to be a better algorithm for solving the problem
of learning the neural model of the examined part of the NPS system on selected 10 research
experiments in the case of ANN implementation in Python, for which the average MSE error
was 2.21· 10−8. It was an order of magnitude lower than in the case of the ADAM Algorithm,
for which it was 2.07 · 10−7.

Table 2. MSE error and Regression Index 𝑅2 results obtained in the case of learning the Perceptron
ANN design in Matlab and in Python using the Levenberg-Marquardt algorithm for 10 data periods of
the operation of the National Power System. Source: own elaboration using paper [28].

No. Language MSE · beginning MSE after a sharp drop Stopping the algorithm
𝑅2

epoch MSE epoch MSE

E1 Matlab 7.28 · 10−7 8 6.69 · 10−9 19 7.05 · 10−10 0.9616
Python 2.00· 10−6 36 1.38 · 10−8 134 5.16 · 10−9 0.7940

E2 Matlab 8.60 · 10−7 8 7.48 · 10−9 18 8.10· 10−10 0.9613
Python 2.26 · 10−6 33 1.28 · 10−8 133 3.65 · 10−9 0.7921

E3 Matlab 7.16 · 10−7 8 6.62 · 10−9 21 6.25· 10−10 0.9619
Python 2.48 · 10−6 42 1.21 · 10−8 129 3.80 · 10−9 0.7377

E4 Matlab 9.66 · 10−7 8 7.62 · 10−9 22 6.77· 10−10 0.9577
Python 3.43 · 10−6 41 1.15 · 10−8 200 5.14 · 10−9 0.7598

E5 Matlab 9.04 · 10−7 8 6.82 · 10−9 19 7.84· 10−10 0.9498
Python 5.17 · 10−6 41 1.20 · 10−8 139 6.73 · 10−9 0.6377

E6 Matlab 1.05 · 10−6 8 7.34 · 10−9 22 6.00· 10−10 0.9549
Python 6.31 · 10−6 42 1.05 · 10−7 149 4.46 · 10−9 0.6829

E7 Matlab 3.52 · 10−6 8 7.28 · 10−9 24 6.32· 10−10 0.9532
Python 3.00 · 10−6 43 1.28 · 10−8 133 6.81 · 10−9 0.7949

E8 Matlab 7.60 · 10−7 8 6.88 · 10−9 20 6.84· 10−10 0.9416
Python 3.71 · 10−6 45 1.13 · 10−8 114 5.11 · 10−9 0.7003

E9 Matlab 6.60 · 10−7 8 6.90 · 10−9 21 7.19 · 10−10 0.9471
Python 3.55 · 10−6 36 1.49 · 10−8 113 4.00 · 10−9 0.6928

E10 Matlab 1.17 · 10−6 8 6.98 · 10−9 22 6.95 · 10−10 0.9372
Python 4.70 · 10−6 50 1.46 · 10−8 166 2.30 · 10−9 0.6855

Values average Matlab 1.13 · 10−6 8 7.06 · 10−9 20.80 6.93 · 10−10 0.9577
Python 3.66 · 10−6 40.90 2.21 · 10−8 141.00 47.16 · 10−10 0.7278

For the LM algorithm, the Regression Index 𝑅2 was also higher, which amounted to 0.7278,
and in the case of the implementation using the ADAM algorithm, it was only 0.6309. It also
turned out that achieving these results was achieved at the expense of a smaller number of
epochs for the Levenberg-Marquardt algorithm, which reached a sharp decline on average in
epoch 9, while for the ADAM algorithm it took place in epoch 41. It is also worth adding
that in the case of the LM algorithm ANN training lasted only 141 epochs, and in the case
of the ADAM algorithm, on average, as many as 163,729. In turn, the Levenberg-Marquardt
algorithm turned out to be the stronger point of the Matlab language, which after a deep



Selection of the programming environment for neural modelling... 103

decline reached the MSE error level of 7.06 · 10−9, which is an order of magnitude lower
than in the case of Python, which after a deep decline amounted to 22.1 · 10−9. It is worth
noting that the MSE error after a sharp drop in the case of ANN implementation using the
ADAM method was comparable in the case of Python, which was 2.07 · 10−7. Meanwhile, for
Wolfram it was slightly higher than in Python, which was 2.27 · 10−7 (it was slightly higher).

Table 3. The results of the MSE error and the Regression Index 𝑅2 obtained in the case of learning the
Perceptron ANN deisgned in Wolfram Language and in Python with use of the ADAM algorithm for 10
data periods of the operation of the National Power System. Source: own elaboration using paper [28].

No Language MSE · beginning MSE·after·a·sharp·drop MSE·after·stopping·the·algorithm
𝑅2

epoch MSE epoch MSE

E1 Wolfram 1.60 · 10−6 13 1.40 · 10−7 200000 6.34 · 10−9 0.7679
Python 3.00 · 10−6 15 1.48 · 10−7 80568 8.48 · 10−9 0.6277

E2 Wolfram 1.59 · 10−6 7 2.00 · 10−7 200000 6.64 · 10−9 0.7070
Python 2.13 · 10−6 11 1.37 · 10−7 197434 7.49 · 10−9 0.7084

E3 Wolfram 1.62 · 10−6 7 2.08 · 10−7 170874 7.20 · 10−9 0.7147
Python 3.3 · 10−6 12 2.25 · 10−7 200000 6.62 · 10−9 0.6518

E4 Wolfram 1.64 · 10−6 7 2.27 · 10−7 154558 7.75 · 10−9 0.6135
Python 3.95 · 10−6 15 1.98 · 10−7 116194 8.24 · 10−9 0.4864

E5 Wolfram 1.68 · 10−6 7 2.22 · 10−7 200000 6.85 · 10−9 0.6664
Python 1.98 · 10−6 9 1.71 · 10−7 123775 6.60 · 10−9 0.6368

E6 Wolfram 1.72 · 10−6 7 2.26 · 10−7 200000 7.88 · 10−9 0.6408
Python 2.70 · 10−6 10 3.06 · 10−7 200000 6.17 · 10−9 0.6644

E7 Wolfram 1.76 · 10−6 7 2.37 · 10−7 154558 8.21 · 10−9 0.6501
Python 3.49 · 10−6 13 2.06 · 10−7 200000 6.12 · 10−9 0.7051

E8 Wolfram 1.78 · 10−6 7 2.38 · 10−7 200000 8.38 · 10−9 0.6001
Python 4.27 · 10−6 15 2.90 · 10−7 200000 5.66 · 10−9 0.5906

E9 Wolfram 1.77 · 10−6 7 2.43 · 10−7 173444 8.81 · 10−9 0.6586
Python 3.25 · 10−6 13 2.17 · 10−7 119234 7.21 · 10−9 0.5415

E10 Wolfram 1.79 · 10−6 7 2.48 · 10−7 200000 6.85 · 10−9 0.5803
Python 2.40 · 10−6 12 1.68 · 10−7 200000 6.57 · 10−9 0.6960

Average Wolfram 1.17 · 10−6 11.45 2.27 · 10−7 185443.40 7.49 · 10−9 0.6594
Python 3.05 · 10−6 9.00 2.07 · 10−7 163729.50 6.92 · 10−9 0.6309

From the course of the MSE error during the training process, as well as from the course
of the Regression Index 𝑅2, it can be seen that increasing the capacity of the ANN by adding
further hidden layers and/or increasing the number of neurons in the hidden layers may have
a beneficial effect on improving both the MSE error and the Regression Index 𝑅2. In such
situations, there was no visible effect of ANN overtraining even when using a very large
number of epochs, which is worth examining in more detail in the next research experiments.
The research experiments presented in this work show that in the case of smart grid systems,
and even more so in unpopulated systems with a high degree of automation, it is very important
to precisely select both learning algorithms as well as programming languages and related
programming environments, hence this type of research is worth continuing.



104 J. Tchórzewski, S. Rosochacki

References

1. Aribib M.A.: The Handbook of Brain Theory and Neural Networks, The MIT Press, Cambridge,
pages 1134, 2003.

2. Bahi M., Batouche M.: Deep Learning for Ligand-Based Virtual Screening in Drug Discovery, 2018
3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa, Algeria,
pp. 1-5, 2018.

3. Beale M., Hagan M., Demuth H.: Deep Learning Toolbox User’s Guide, The MathWorks, Natick
2020-2022.

4. Błaszczyk P.: Sztuczna Inteligencja, Uniwersytet Śląski (in Polish), http://books.icse.us.edu.
pl/runestone/static/ai/index.html (access: 28.02.2023).

5. Capellman J.: Hands-On Machine Learning with ML.NET, Packt Publishing, Birmingham, pages
296, 2020.

6. Chollet F.: Deep Learning with Python, Manning’s Publications Co., Shelter Island, pages 478, 2021.
7. Chonacky, N., Winch, D.: Reviews of Maple, Mathematica, and Matlab: Coming Soon to a Publication

Near You. Computing in Science & Engineering, IEEE XPlore Digital Library, Vol. 7, No. 2, pp.
9-10, March-April 2005.

8. Ciskowski P.: Poznawanie własności sieci neuronowych w środowisku MATLAB (in Polish), Oficyna
Wydawnicza Politechniki Wrocławskiej, Wrocław, pages 102, 2012.

9. Demuth H., Beale M.: Neural Network Toolbox User’s Guide, The MathWorks, Natick 2002-2019.
10. Di Marco F.: TensorFlow implementation of Levenberg-Marquadt training algorithm: https:
//github.com/fabiodimarco/tf-levenberg-marquardt(access: 15.02.2023r.)

11. Freeman J.A.: Simulating Neural Networks with Mathematica, Addison-Wesley Publishing Com-
pany, Reading, pages 341, 1994.

12. Giełdowa Platforma Informacyjna, Słownik pojęć (in Polish),http://gpi.tge.pl/informacje/
slownik-pojec (access: 16.01.2023).

13. Guesmi L., Fathallah, H., Menif M.: Modulation Format Recognition Using Artificial Neural
Networks for the Next Generation Optical Networks, pp. 2-19. 2018.

14. Haykin S.: Neural Networks, A Comprehensive Foundation, Pearson Education, New Delhi, pages
842, 1999.

15. Jain L., Fanelli A.M.: Recent advances in Artificial Neural Networks Design and Applications, CRC
Press, Boca Raton, pages 372, 2017.

16. Karampelas P., Vita V., Pavlatos C., Mladenov V., Ekonomou L.: Design of Artificial Neural
Network Models for the Prediction of the Hellenic Energy Consumption, 10th Symposium on Neural
Network Applications in Electrical Engineering NEUREL-2010, Faculty of Electrical Engineering,
University of Belgrade, pp. 41-44, 2010.

17. Kasabov N.K.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, The
MIT Press, Cambridge, pages 581, 1998.

18. Kingma D.P., Ba J.L.: Adam: A Method for Stochastic Optimization, International Conference on
Learning Representations, San Diego, pages 13, 2015

19. Marlęga R.: Correction of the parametric model of the Day-Ahead Market system using the Artifical
Neural Network, Studia Informatica. Systems and Information Technology, Vol. 1(26)2022, pp. 85-
105.

20. MathWorks, Perceptron Neural Networks, MATLAB Help Center 2022, https:
//www.mathworks.com/help/deeplearning/ug/perceptron-neural-networks.html
(access: 05.02.2023)

21. MathWorks, The: Hyperbolic tangent sigmoid transfer function, MATLAB Help Center, 2022,
https://www.mathworks.com/help/deeplearning/ref/tansig.html (access: 05.02.2023).



Selection of the programming environment for neural modelling... 105

22. Obuchowicz A.: Optimization of Neural Network Architectures, Chapter 9, [in:] Intelligent Systems,
[eds] Wilamowski B. M., Irvin J. D., The Industrial Electronics Handbook, Second Edition, Taylor
and Francis Group, LLC, pp. 9.1-9.24, 2011.

23. Obuchowicz, A. 2000. Optimization of neural network architectures. In Biocybernetics and Biomed-
ical Engineering (in Polish), Neural Networks, [eds.] W. Duch, J. Korbicz, L. Rutkowski, and R.
Tadeusiewicz, Academic Publishing House EXIT, Warsaw, pp. 323-368, 2000.

24. Osowski S.: Sieci neuronowe do przetwarzania informacji (in Polish), OW PW, Warszawa, pages
422, 2013

25. Patterson J., Gibson A.: Deep Learning. Parctitioner’s Aproach, O’Reilly Media, Sebastopol, pages
83, 2017.

26. Płaczek S., Płaczek A.: Uczenie wielowarstwowych szerokich sieci neuronowych z funkcjami ak-
tywacji typu ReLU w zadaniach klasyfikacji (in Polish), Poznań University of Technology Academic
Journals, pp. 47-58, Poznań 2018.

27. Polskie Sieci Elektroenergetyczne SA, Wielkości podstawowe raportów dobowych z
pracy KSE (in Polish), https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/
raporty-dobowe-z-pracy-kse (access: 26.01.2023, 08.05.2022)

28. Rosochacki S.: Komparatystyka języków programowania do modelowania sztucznej sieci neu-
ronowej z wykorzystaniem danych dotyczących Krajowego Systemu Elektroenergetycznego, Praca
inżynierska napisana w Instytucie Informatyki pod kierunkiem dr hab. inż. Jerzego Tchórzewskiego,
prof. uczelni, Wydział Nauk Ścisłych i Przyrodniczych, UPH, Siedlce, pages, 67, 2023.

29. Ruciński D.: Modeling of the Day-Ahead Market on the Polish Power Exchange on the Example
of Selected Artificial Neural Networks, Chapter 4, [in:] Theory and Application of Artificial Neural
Intelligence Methods, [eds.:] Tchórzewski J., Świtalski P., Series Intelligent Systems and Information
Technologies, Wydawnictwo UPH, Siedlce, pp. 85-117, 2022.

30. Sartori M.A., Antsaklis P.J.: A simple method to derive bounds on the size and to train multilayer
neural networks. IEEE Transaction of Neural Network, 2(4), pp. 467-71, 1991.

31. SciSharp: Tensorflow.NET, https://scisharp.github.io/tensorflow-net-docs/ (access:
02.02.2023)

32. Shah M.: Fundamentals of Computer Vision, University of Central Florida, Orlando, pages 133,
1997.

33. Tadeusiewicz R.: Sieci neuronowe (in Polish), Akademicka Oficyna Wydawnicza, Warszawa, pages
195, 1993.

34. Tadeusiewicz R.: Archipelag sztucznej inteligencji (in Polish), OW EXIT, Warszawa, pages 126,
2022.

35. Tamura S, Tateishi M.: Capabilities of a four layered feedforward neural network: four layers versus
three. IEEE Transaction of Neural Network, 8(2), pp. 251 -155, March 1997.

36. Tauron Polska Energia, Karta Aktualizacji nr 16/2020 https://www.tauron-dystrybucja.pl/-
/media/offer-documents/dystrybucja/uslugi-dystrybucyjne/iriesd/26-05-2020/projekt_karty-
_aktualizacji_16_2020_iriesd.ashx (access: 26.01.2023)

37. Tchórzewski J.: Metody sztucznej inteligencji i informatyki kwantowej w ujęciu teorii sterowania i
systemów (in Polish), Wydawnictwo Naukowe UPH, Siedlce, pages 343, 2021.

38. Tchórzewski J.: Rozwój systemu elektroenergetycznego w ujęciu teorii sterowania i systemów (in
Polish), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, pages 190, 2013.

39. Tchórzewski J. Wielgo A.: Neural model of human gait and its implementation in MATLAB and
Simulink Environment using Deep Learning Toolbox, Studia Informatica. Systems and Information
Technology, Vol. 1-2(25)2021, pp. 39-65.

40. TensorFlow Team, The.: Introduction to TensorFlow Datasets and Estimators, Google Devel-
opers Blog, 2017, https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html
(access: 28.02.2023).



106 J. Tchórzewski, S. Rosochacki

41. Yang T., Blom H. A., Mehta P. G.: Interacting Multiple Model-Feedback Particle Filter for Stochastic
Hybrid Systems, Proceedings of the IEEE Annual Conference on Decision and Control (CDC), pp.
7065-7070, 2013.

42. Żurada J., Barski M., Jędruch W.: Sztuczne Sieci neuronowe. Podstawy teorii i zastosowania (in
Polish), Wydawnictwo PWN, Warszawa, pages 375, 1996


